
.

7
,- - - LA

I , . ' .",
PA3 Performance Analysis Approximations for

Parallel Processing of Concurrent Tasks

Erol Gelenbe
Zhen Liu

December I, 1967

Research lristitute for .Advanced Computer Science
NASA Ames Research Center

R.IACS Technical RePoit 87.30

i b Q 3 - 73 7 4 d

Research Institute for Advanced Computer Science

Performance Analysis Approximations for

Parallel Processing of Concurrent Tasks

Erol Gelenbe
Zhen Liu

December 1, 1987

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 87.30

Abrtract
This paper presents a method for obtaining approrimate solutions

to the performance andysis of pardlel processing on multiprocessor
sys tem compored of a finite number of homogeneous processors. In
particular, we compute the e:pected rerponse time o j jobs conaist-
ing of concurrent taks. We awume that each task requires a n e:-
ponentidly distributed amount o j processing. The concurrency and
precedence relationa between tab are described by directed acyclic
graphs, rcjerred to aa task graphs or precedence graph. Simulation
results which we present indicate that the estimates provided by our
method are lower boun t to the mean overall response time of t a sk
ezecuted on the system.

1 Introduction
There has been increasing interest in performance analysis of concurrent p r e
grams in recent years. A concurrent program consists of a set of interdependent
tasks with precedence constraintr which are usually ducribed by a task graph,
also referred to M a precedence graph, whose nodu represent tasks and directed
edges represent precedence relations between tasks. One of the most important

Work reported herein was supported in part by Cooperative Agreement NCC 2-38?
between the National Aeronautics and Space Administration (NASA) and the
Universitiea Space Research Association (USRA), and by a grant from Centre National
d’Etudes des Telecommunications and the Centre National d e la Recherche Scientifique
(A T P rnathematiques-Informatique).

performance measures of concurrent programr in the overall response time of a
concurrent program running on multiprocessor system.

When the durations of tasks are b e d and there are infinitely many proces-
sors, it in easy to determine the completion time of a concurrent program by
using PERT diagrams. If resourcer are limited, research has been carried out in
the area of task assignment and task rcheduling. When task durations are al-
lowed to be random, the performance analyrin of concurrent programr becomes
more difficult.

In order to make the analyris tractable, r h p l e rtructures have been con-
sidered. Robinson [Rob 791, and Sahner and Trivedi [ST 871 obtain the overall
execution time by restricting the graph rtructure to be series-pomllel. Gelenbe
et al. [GMSW 861 consider the same graph rtructure with random graph models
and derive a clored form expression for the maximum speed-up which can be
expected by executing such programs on a multiprocessor system.

Dodin [Dod 851 rtudies the general directed acyclic graph rtructure. By
removing edges or spliting nodes, a directed acyclic graph can be transformed
into a series-parallel graph. Thus lower bounds and upper bounds for overall
completion time are obtained.

Gelenbe et a1 [GNPT 861 model the task graph of a parallel computation by
a random, directed, acyclic graph consisting of rn vertices in which an arc horn
vertex i , i = 1,2, . . . , rn - 1 to vertex j , j = i + 1, - - , rn exists with probability
p. They derive aa approximation for the expected procesring time of a tank
graph of thia type on an infinite number of procewom under the amumption
that each tank requires an exponentially distributed amount of processing.

In this paper, we consider performance models of concurrent programs on
finite rewurces. h particular, we conaider the response t h e of concurrent pro-
grama executing on muhiprocensor ryr tem which consist of a finite number of
homogeneous processom. The response time in defined an the delay between the
arrival date of a job to the qs tem and the d a k where every tank of that job
has completed ita procewing. At &at, we assume that all jobs have the =me
tank graph. Thin restriction is removed in Section 5. The tank graphn under
consideration have a general directed acyclic structure.

It in wnmed that the processing demands of the tanks compoeing a con-
curnnt program are independent with identical exponential distributions. The
arrivab of jobr (i.e., concurrent programr) to the multiprocemor q r t e m are
governed by a Poisson process. We abo aarume that tanka are aarigned to pro-
cesrors just before their execution, and that there k no a priori knowledge of - -
the processor upon which a task will be executed.

2

The model we consider is analytically intractable. In this paper, we obtain
a computationally simple solution for the average delay of jobs in the system
using an approximate technique based on product form networks.

In Section 2, we describe the problem in detail. In Section 3, the approxi-
mate solution b described, whereas in Section 4, approximate solution results
are compared to simulation rcsults. Section 5 provides an extension of our
method to a multiprogramming environment.

2 Problem description
We assume that the multiprocessor system under consideration has M identical
procesaom. A main memory ia shared by all procemors. It is assumed that
this memory b of unlimited she ao that it can store the addrew space of all
program which are present in the qstem. The workload consbtr of a set of
structurally identical concarrent program consisting of a b e d number of inter-
dependent tasks. The precedence constraints between tasks are defined by an
acyclic precedence graph in which each node represents a task.

We consider a stream of jobs (i.e., concurrent programs) arriving to the sys-
tem according to Pokon procesa with parameter X . All the j o b have the
same precedence graph, denoted by G . Each taak requires an exponentially
distributed proceuing t h e with parameter p . Proceasing times of different
tasks are amumed to be independent. Let N be the mudmum number of pre-
decessors that tanks of graph C may have, N 5 m - 1 , where m is the number
of tasks in the job (or noden in C).

Upon arrival, a job ia immediately split into its constituent taaks so that
tasks which have no predecewom ue ready for immediate execution and enter
directly into the procemwr queue waiting for service by one of the proceallors.
The other tasks, which are not yet available for execution because of precedence
constraints, have to wait in a buffer until their predecessors have been serviced.

We model thin wait aa follawr. Tasks having i (i = 1,2, . , N) predecesaora
enter buffer i , and wait for their i predecessors’ service completion. When the
execution of a taak b completed (by one of the procusora), it leaves the system
and may free some tasb waiting in one of the buffers. Once released by all
its serviced predecessor tasks, a tank leaves the buffer to join the newer queue.
An arriving job remains active in the aystem until all the tasks of the job have
completed execution.

3

2.1 The general system model
An exact representation of the syrtem could be the following. The state of the
system is a collection of tasks which are either waiting for their predecessor
tasks to be terminated, or waiting in queue, or being procwsed by one of the
processors. For a tank to be waiting in queue or to be processed, all of its prede-
cessor tasks must be processed. Amuming FIFO service at the procenuors, the
state murt abo reprenent the order of arrival of tanh, which b determined by
the order in which the programs they belong to have arrived.

Each task will be denoted by a pair of integers (i, j) where i b the program
number and j L the tank number within the program. The state of the system
will be represented by

where W and Q are defined an follows:
s E (WQ)

(t i , t 2 , . . . , tlol), ti (1 5 i 5 191) b a task, and there
are 101 tasks running or ready to run,

if there are no task8 in the system.

Q = 1
0,

The tasL ti in Q are given in FIFO order with t l being at the head of the
queue. Therefore the first M of these tanks will be actually running.

0,

(w1, wp, * * a , wlwl) ,

if no tasb are waiting,

if there are IWl tanks waiting.
w = {

where each W I in a pair
wi = (TI , Ai);

in which TI b a task and A in the wt of tanh which are the immediate pre-
decessora of TI . In fact, A1 will be unnecennary if aU the program running in
the system have exactly the same precedence graph; in that particular case the
task TI uniquely identifies the aet A(for all program. However if program can
have different tank graph, the net A1 will have to be specified.

The analysh of thin general state-space model beem beyond the capability of
analytical modelling. In order to illuatrate the complexity of the model comider
the state transition associated with the arrival of a program, from S = (W,Q)
to S' = (W', 9') :

(~i,...,~~~~,w~~~+~,~..,wITy,+~), if there are k tasks with
predeceosora in the arriving program,

if IWl = O and k = O .

W'

(t ~ , . . . , ~ ~ Q ~ , ~ Q ~ + ~ , ~ ~ ~ , ~ Q ~ + ~) ~ if there are j tasks without
predecessors in the arriving program,

if 101 = 0 and j = 0 .

Q' G

Obviously wi = {T,', A:} , so that the ret of tasks of the arriving program
is given by { ~ ~ l + ~ , ~ ~ ~ l ~ ~ l + ~ , ~ Q 1 + l l ~ ~ ~ , t ~ q l + j } . Furthermore the order in
which the taakr ti which have no predeccsson are placed in the processor queue
Q' is of importance; we shall aooume that they are placed in the order of increas-
ing task number, so that the task with no predecesson and with the smallest
task number h placed closest to the head of the queue. Thb will be the rule
which will be used in general for placing tash in the processor queue.

The representation of the other transitions related to taak departures i
even more complex. That b why in the rest of thb paper we shall deal with
a simplified model in which tasks and their predecessors will not be identified
individually, and certain simplifying mumptionr will be made about the state
transitions.

2.2 The simplified model
In the simplified model, we shall consider generic tash. The state of the syrtem
will be represented by the vector

k = (ko,kl,...,kN)

where k; represents the number of t u h in the system which have i (1 5 i 5 N)
predecessor tasks. Recall that N b the maximum number of predeccvon which
a task may have. & denotes the number of tanka which have no unfinished
predecesson at the instant conridered. Thin state representation h obviously
much simpler than the general one. However it do- not capture in a precb
manner the structure of the task grapha. The state transitiom form k to k' are
given aa follows for the simplified model.

0 Arrival of a program or job represented by a sequence of task arrivab.
Let X be the arrival rate of program to the aystem. We shall consider
a Poboon arrival rate of tanka of rate A r n , rn being the total number of
taoh per program. Thw we are modelling job arrivab by a flow of ringle
task arrivab. Let mi be the number (or average number for a random
program graph) of tasks having i predecessors. Upon arrival of a task,

5

with rate

with probability chosen to be pi E mi/m. Notice that E,” mi = m . The
rate of transition from state k to this particular k’ is thus Amp; .

0 Departure of a task from one of the wait buffers.
We ansume that transitions from state k to some state

k’= (k o + l , . - - , k - l , . . . , k ~) , 1 I i 5 N

where ki > 0, occur with rate p i (k i) . These represent the departure rate
of a task from the wait buffer into the processor queue. p i (k ,) will be
determined a a function of model parameters as given below.

Departure of a taak from the processor queue.
This will lead into the state

Thus we are aasuming that all individual tanks have independent expc-
nentially distributed execution timen of average value l / p . We may take
p = 1 without lose of generality.

No other state transitions, except for thooe given above, are allowed to oc-
cur. Figure 1 illwtratea the simplified model.

3 Delay analysis
The determination of the response time of a job described by a taak graph C
(ie., the overall delay of graph C’s t a a b through the system), denoted by &,
i.3 of crucial importance in qualifying the performance of parallel processing.
However hardly any theory exists to tackle such problems. The problem seems
to be open in its general form.

For the d e of obtaining a tractable mlution to the aystem, we restrict
our attention to the simplified model, in which the following two simplifying
assumptions have been made in Section 2.2.

A1) Every buffer M replaced by a FIFO queue. The service time of
queue i (1 I i 5 N) M exponentially distributed with parameter pi
defined in (3). When a customer of queue i ia serviced, it joins the
queue 0 (the multiproctsmr queue).

-

6

Servers

Queue 0
Task Arrivals

Queue 1 Server Queue

p2

Queue N

Figure k The Model Deacription

A2) The anivab of tuL to the ryrtem constitute a Poiaaon proceaa
of parameter A, A = d. Let TI, T,, - - - , T', - - - be the Uriving krk.
We aaaume that b k a Tim+s,. * * , Tim+,,, farm a precedence
gnph (i = 1,2, 0) . upon arrival, a tut becoma 8 cuatamer of
queue i (0 < j I N), denoted by Cj , with probability pj = q/m.

With wumptbns A1 and A3, we obtain a product form network (cJ.
[BCMP 751) which provider the bui of our approach.

Before proceeding with the analpb, we introduce the following notation:

0 P(k) : joint stationary queue length probability dirtriiution,

0 pi(k) : rtationary probability for queue i (0 < i < N) to have ki (n =

0 E h : mean number of tub in queue i (0 I i I N),
0 Ek : mean number of task in the ryrkm,

0 & : mean reaporue time of taka in queue i (0 5 i 5 N),
0 & : mean response time of taka in the rptem,

0 Q : mean number of jobr in the ryrtem,

0,1,2, -. .) culltomur,

7

0 & : mean graph response time of graph C, ie., the overall delay of tasks
of graph G through the system,

0 q: expected waiting time of j customers who simultaneously arrive at
queue 0,

qi : service contribution to queue i (0 5 i 5 N) of a customer CO leaving
queue 0.

The notion of rerv ice contribution in introduced in order to derive pi (1 5
i 5 N). Let C, be the ret of nodes of graph G, Suc(u) the ret of succeMors of
u, rank(u) the number of predecessors of node w. qi is meanured by the average
number of successors having i predecessors.

(2)
1
m

qi 5' -(l(tonk(u') = i))
WEC. u'ESuc(u)

where 1(z) in the characteristic function:

1, i f z i n t r u e
1b) = { 0, i f z in fabe

Thus we may approximate the effect of the departure of a tank from the system,
on the set of waiting tanks, aa the departure of (q i / i) taka on the average from
the set of tasks in the i-th waiting queue. Thin leads to the approximation:

where 7 i the effective departure rate of the multiprocaaor service queue:

it 1

Since our approximate model m an open product-form network, we have the
following formula for the joint queue length probability ([BCMP 751):

where K i a normalining constant, p,, is expressed by (l), and by the nature of
our model,

a

and for 1 5 i _< N
(8) k (n) = h, n = 1,2,..-

We derive the marginal queue length probability distribution Pi(k,) (i =
0,1,. . . , N) in the following way.

Let

then

Summing over all n = 0,1,2, e, we have

Hence we get the expreaaion of Ki

Therefore, for i = 0,1, . . , N and n = 0,1,2, . - e, (14) can be rewritten aa
~ .

9

For i = 0,1, - . , N , the mean queue lengths are expressed as

n= 1

So the mean number of tasks in the system Ek is given by

N
E k = x E k

By Little’s results,
customer Ci (i = 0,1,

and the average delay

i= 0

we obtain the formula for the average response time of a

of a task &

R Rt = - A
The above formulae provide performance measures a t the task leveL In par-

ticular, R, (i = 0, 1, - . . , N) indicates the time that a task having i predecessors
must expect to wait before becoming available for execution, and & indicates
the expected delay of a task passing through the system

We now compute Rc, the average response time of jobs. First of all, we
define the concept of level.

The level of a node v of a directed acyclic graph, denoted by L(v) , is defined

1. L(u) Ef 1 , if v E C, and v has no predecessor,

2. L(v) = (m%pr,(,,) L(p))+l I where P r e (v) denotes the set of immediate

The level of a task is conridered an the level of the corresponding node in

as follows:

predecesson of node v.

the task graph. The leuel of a graph, denoted by Lc, in given by

Lc = max L(v)
eEC.

In order to estimate the mean resporw time of jobr, we neglect the fact that
task processing timer will vary in general, and we m a m e that they are conatant.
Therefore we annume that task8 of a same job are aeMced by the processom level
by level, and a task of level i can be seerviced if and only if all tasks of level i - 1
belonging to the name job have completed execution.-Eurthermore we assume
that

-

10

AS) Tasks of the same level become simultaneously available for
execution.

Let t l , t 2 , . . , tu be a group of tasks concurrently arriving a t the multipr-
cessor service queue. Without loss of generality, we assume that their service
order b tl 4 t g 4 4 tu. Let Wk(n) denote the mean waiting time of task t k
(1 5 k 5 u) before service if there are n (n = 0,1,2, .) t a s b in the queue a t
the instant of the amval of the group. Thus we have the formula

Therefore, for j = 1,2,
the server queue can be expremed aa

a, the expected waiting time of j concurrent tasks in

00

(23)
- w j = PO(.) * wj(n)

-0

or

q= 2 P o (n) . (n + k - M) . p " / M (24)
n= ma=(M - k+l,O)

Let b (l) denote the number of tasks of level I (1 I 1 5 Lc). According to
assumption AS, tasks are rerviced level by level, and tasks of the same level
concurrently arrive at the multiprocessor queue. Therefore the job responw
time of graph C, &, may be expremed as the s u m of the completion time of
each level:

1
(25) Rc = E(- + Tirb(l))

I= 1 p -

And finally, by Little's result, we get the average number of jobs in the system
Qi

Q = A . & (26)
Notice that the synchronisation delay of tasks induced by the precedence

graph is taken into account in computing the mean number of t a s b and the
task response time. In computing the mean delay of a job pasuing through the
system, however, the synchronisation delay of tasks is ommited since we neglect
the variability of the wrvice timw of the tasks.

4 Comparison of approximations with simula-
tion results

In this section we compare OPT approximations of expected job response time
against results obtained &om simukfioni. The task g ~ ~ h - ~ a m ~ e s - ~ - e s e l e c t ~

11

from various parallel processing application a r e a ruch M numerical analysis,
image processing, etc. Their structures are presented in the Appendix. Tables
1-5 report results of comparisons of approximations with simulations. Figure 2
illustrates the response times of graph 3 under different syrtem load conditions.
The simulations have been carried out with the QNAP2 package. 95% confi-
dence intervab have been calculated with the regeneration method. The system
load used in Tables 1 to 5 is defined by

Table 1. Comparison of job response time for graph 1.
(x = 0.06, p = 1)

' number of system approximate rimulation relative
processom load soh tion estimate error %

1 0.720 32.57 46.84f2.45 30.3
I

2 0.360 11.19 12.21*0.22 8.3
3 0.485 8.71 9.27f0.09 6.1
5 0.240 8.02 8.39f0.06 1.1
10 0.072 8.00 8.30f0.06 3.6

Table 2. Comparison of job response time for graph 2.
(A = 0.06, p = 1)

r number of 11 ryrtem I approximate I rimulation I relative I
d a t i o n

0.480
0.320
0.383 30.0

10 0.096 31.4

12

Table 3. Comparison of job ruponse time for graph 3.
(A = 0.06, p = 1)

processors
1
2

I number of 11 system I approximate I simulation 1 relative 1 _ _
load solution estimate error %
0.960 256.00 260.2f37.61 1.6
0.480 14.94 18.69k0.44 20.1

L

3 0.320 10.92 13.78f0.16 20.8
5 0.192 10.03 12.59f0.08 20.3
10 0.096 10.00 12.49f0.07 19.9

number of system
processors load

approximate simulation relative
solution estimate error%

1
2

I 11.3 10 11 0.090 I 7.00 I 7.89f0.05 I

..

0.900 78.00 134.3f14.89 41.9
0.450 12.78 16.10f0.45 20.6

Table 5. Cornpariaon of job rwponse time for graph 5.
(x=o.M,p=l)

3 1 0.300 9.79
5 11 0.180 7.21

Our approximations compare favorably with the simulation results. The
relative emora are mostly within 10 or 20%, and in the wont case within 40%
of the simulation results. The fact that our approximation underestimates the
overall delay can be explained by the three simplifying aaaumptions. Indeed

1. Bulk arrival queueing systems behave generally worn than single arrival
systems under the same load.

2. Dependent services (in our model,-servicea of queue 1 to N) generally
imply a larger variance of service time, so that the waiting time is greater.

10.1M0.12 3.0
8.21f0.06 12.2

13

Response Tme
L

5

4

3r

21

1I

10 &ssm

Svstem Load -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

------ : Simulation Results
: Approximations

Figure 2: Response Tim- of Graph 3 Under Diflcrent System Load Conditions

14

3. Synchronization of tasks intrducea additional delays to task execution
times.

These intuitive arguments indicate that our approximation provides lower bounds
to expected response time of jobs.

5 The extension of the method t o multipro-
gramming systems

The extension of our approximate solution to the performance analysis of paral-
lel processing in multiprogramming environments is immediate. In this rection,
we shall only discuss it briefly. T h e notation, 3 not redefined, is taken from
Section 3.

In a multiprogramming system, different types of jobs are allowed to be
executed simultaneously. Let C1, Gg, . . . , CH (H 2 1) denote task graphs of
jobs of classes 1 , 2 , . - . , H , respectively. We s s u m e that arrivals of jobs of
classe h (h = 1,2, . . . , H), are generated by independent Poisson processes with
parameter Ah. Jobs of class h have mh tasks which are divided into Nh (N h 5
m h - 1) groups according to their respective number of predecessors. Let

Every task (whichever clans or job it belongs to) K assumed to require an expo-
nentially distributed amount of proceseing wit6 parameter p.

By replacing bulk anivab with P o i o n arrivals, and replacing waiting buffem
with independent exponential service queues, we obtain a new simplified model
which is similar to the one in Section 3. We thus consider a stream of tasks
t l , t z , . . . , t,, .. . arriving to the syyrtem, where t,, (n 2 1) belongs to a job of
clZss j with probability mi/ m h . The arrivals are represented by a Poisson
process with parameter A,

W
A = x m h * X h (29)

h= 1

Upon arrival, a t a k becomes a customer of queue i (0 5 i 5 N) with probability
Pi I

where
mh, = number of tasks in C h having i predecessors. (31)

15

which satisfies

i = O

The concept rcrvicc contribution in represented by

where Gt denotes the set of nodes of graph Gh, Such(u) denotes the set of
successors of u.

Formulae (5)-(8), (17)-(21) remain valid for the queue length probabilities,
mean queue lengths, mean number of tasks in the system, and average delays of
tasks. Furthermore, the mean number of tasks which belong to jobs of clans j
(j = 1,2, . .. , H) in queue i (a = 0 ,1 , . . , N), denoted by Ekji , can be expressed
M

where Eki is expressed by (la), and the mean number of tasks which belong to
jobs of c h j (j = 1,2,. . , H) in the system, denoted by E k j , can be expresaed

where E k b expresaed by (19).

The idea for computing the expected responne time of a job of c h h remaim
the same. Maintaining the sssumption AS, we-can rewrite (25) as follows

where &, denotes the expected response time of a job of clasr h, Lc, denotes
the level of graph Gh, bh(l) denotes the number of tasks in graph Gh at level 1
(1 5 15 Lc,), and (j = 1 , 2 , - . -) M given by (24).

Similar to (26), the average number of active jobs of class h is expressed as:

Q h = A h ' R c * (37)

and the average number of jobs in the system

16

As above described, we obtain a computationally simple estimates for per-
formance analysis for parallel processing in multiprogramming environments.

6 Conclusions
Paralleliam is often limited by precedence relations within programs and finite
resources in parallel processing system. Performance predictions for concur-
rent programs on multiprocessor systems are of crucial importance for both
software and hardware designers. Nevertheless hardly any theory is available
for analysing the performance of concurrent program which have general di-
rected acyclic graph structures and execute on multiprocessor systems with a
limited number of processom

In this paper, we have considered the expected reaponse time of concurrent
program executed on multiproccaaor aystemn with a finite number of proceb
sori. We have introduced an approximate model to estimate the perfomance
measures of parallel processing. The method has been extended to multipre
gramming system.

The multiprocessor system under consideration consists of a finite number
of homogeneous procemrr which share a central memory. Arriving jobs (ie.,
concurrent p r o g r m) consbt of taab with identical exponential execution time
distribution. The concurrency and precedence relationship between tab are
defined by dkcttd acyclic graphs of general structure. The anivab of jobs art
assumed to be generited by a Poianon procem.

Becauw of the concmency, the queueing network resulting from such a sys-
tem does not have a prodact-form solution. An approximate solution method
has been described which modeb the system by a wt of waiting queues for
tasks whose predecesaom have not yet terminated their execution, and a central
server with variable wrvice rate. Some simplifying wumptions have been made
to derive the estimater of the response time of jobs. The accuracy of the a p
proximation haa been reported through compariaona against simulation results.
Some arguments have been provided to indicate that our approximations are
lower bounds to the expected response time of jobs.

Future rawarch topics include investigating approximate solutione to per-
formance estimates of concurrent program consisting of tasks with dzerent
service distnbutiom, and approximate solutiom to the cane where task assign-
ment strategies are static, which means that each task haa a previously specified
procemor destination.

17

References

[BCMP 751: Baskell,F., Chandy,K.M., Muntr,R.R. and Palacioe,F.G. Open,
Closed, and Mited Network of Queues w'th Different Classes of Customers.

[Dod 851: Dodin,B. Bounding the Project Completion Time Distribution in
PERT Networks. Operations Research, vo1.33, No.4, pp.862-881 (July-August
1985)

[GMSW 861: Gelenbe,E., Montagne,E., Suros,E. and Woodside,C.M. A Per-
formance Model of Block Structured Parallel Programs. ISEM research report
n046, UniversitC de Paris-Sud, fiance (1986)

[GNPT 861: Gelenbe,E., Nelson,R., Philips,T. and Tantawi, A. The Asymp-
totic Processing Time for a Model of Parallel Computation. Proceeding8 of
National Computer Conference, LM Vega, 1986.

tiprocessor Algorithms.
pp.24-31 (Jan. 1979)

sis Using Directed Acyclu Graph.
Engineering.

J.ACM V0122, pp.248-260 (1975)

b [Rob 791: Robinson,J.T. Some Analysis Techniques for Asynchronous Mul-
IEEE Trans. on Software Engineering, VoLSE5, No.,

[ST 871: Sahner,R.A. and Trivedi,K.S. Performance and Reliability Analy-
To appear in IEEE Trans. on Software

18

Graph.1

,

7 Appendix: Task graph examples

19

Graph.2

Graph.3

.

20

Graph.4

Graph.5

0
21

